
ARCLIB

Archos Media Library Specification

Version 1.5 © 2003/2004 Archos S.A.

AGREEMENT OF USAGE

This document is for information purposes only and does not constitute any
agreement between Archos SA or its subsidiaries and you other than descibed here
below. This document may only be reproduced in its entirety and must include this
AGREEMENT OF USAGE message.

Archos does not guarantee the accuracy of this information and usage of this
information and any results of it are at the complete responsibility of the end user.
Archos does not provide any user support for this information. The results of any
work derived from usage of this information which render your Archos device
unusable or unsatisfactory in performance are assumed by the creator of such work.

ALL RISKS AND LIABILITIES INVOLVED IN USING THIS INFORMATION FOR
USAGE WITH ARCHOS PRODUCTS IS ASSUMED BY THE END USER.

Revision history:

v1.0 10.04.2003 - initial version

v1.1 29.04.2003 - added private data section in header

- added requirement for a "search list" in the library structure
- added year and genre information for media files

V1.2 02.05.2003 - added chunk header for private data
- added flags to file_str
- added WMA type

V1.3 05.05.2003 - added UTF8 encoding for strings
- added byte order definition
- changed alignment for all sections to hard drive sector size
- added genre list
- removed sample library file

V1.4 02.07.2003 - append list_entries definition
- append data types definition

V1.5 18.05.2004 - add max library size
- add filename and position
- add libdump.c source code

Archos Media Library Specification

Introduction:

Archos MP3 and Multimedia products use no proprietary file system on their hard drives. Files can be
up and downloaded from and to the units with standard OS tools (e.g Windows Explorer) using a
generic USB mass storage driver. The firmware on the Archos players can "browse" the hard drive
and play the music or multimedia data. "Organizing" the media content on the players is left to the
user (e.g. put music files in a /artist/album/title folder hierarchy), Archos players do not impose a
certain format or folder layout on the hard drive.

Besides the file name (and the location on the hard drive) media files can have a variety of additional
"meta" information associated with them (e.g. information about artist/album/composer/year etc. found
in ID3 tags). Users want to "browse" or search their media files on the player according to this meta
information.

To allow for meta information based browsing Archos is implementing a "media library" feature for its
players. The media library is a special file on the hard drive which holds structured information about
the media files on the hard drive. If present, the media library is read by the players and used to offer
meta information based browsing in addition to browsing the hard drive contents directly.

The format of the media library file is open to interested parties so that they can compile a media
library for Archos players from their own databases.

Scope:

This document describes only the “ARCLIB” file format as it is used on Archos GMINI120 and
GMINI220 products, the information may not be valid for future Archos products.

Media Library structure:

The media library has two basic types of data, "files" and "lists":

- "Files" are music content, like MP3/WMA/WAV songs.
- "Lists" are used to organize and structure the "files" for easy access by the user. A "list" is just a

collection of further "lists" or "files", comparable to a folder on a hard drive.

The structure defined by "lists" and "files" can by arbitrary (within certain limits), there is no imperative
on how the files are to be organized into folders.

Lists can contain only further lists or only files, mixed lists that have both, lists and files are not
allowed.

List also need to be unique, it is not allowed to "link" an existing list in a later defined one. This
ensures that the tree structure is indeed a tree and for each list a unique "parent" list can be found.

There must exist at least one list which holds all media content and therefore can be used for
searching. This list can be included in the list structure (e.g. "All Songs") but it can also be a "hidden"
list which will not be reachable from the "root" list. The number of this list must be given in the library
header.

Media content inside a list should be sorted in a reasonable way (e.g. alphabetically for artists/allbums
etc. or according to track number for songs from one album)

Media content like songs, video etc can be referred to in multiple lists, this allows to structure the
same content by different criteria.

Playlists (which on the PC would be a M3U file or similar) are also created using lists in the library, the
actual .m3u files which may be on the hard drive are not referenced in the library.

Example structure of a library file:

List 1: Root
#1: Artists List 2: Artists
 #1: Beatles List 3: Beatles
 #1: White CD List 4: White CD
 #1: Help.mp3
 #...
 #2: Black CD List 5: Black CD
 #1: Black.mp3
 #...
 #2: Stones List 6: Stones
 #1: Best of List 7: Best of
 #1: we_rock.mp3
 #
#2: Albums List 8: Albums
 #1: Best of List 9: Best of
 #1: we_rock.mp3
 #
 #2: Black CD List 10: Black CD
 #1: Black.mp3
 #...
 #2: White CD List 11: White CD
 #1: Help.mp3
 #...
#3: Songs List 12: Songs
 #1: Black.mp3
 #....
 #...: Help.mp3
 #.....
 #..: we_rock.mp3

#4 Playlists List 13: Playlists
 #1: Favorites List: 14: Favorites
 #1: Help.mp3
 #2: Black.mp3
 #3: we_rock,mp3

As seen there is a total of 14 lists which contain either further lists or MP3 songs.

The sample library is very simple and offers four diffferent “approaches” to the library content:

- Artists / All Artists / All Albums of one artist / All songs of one album of one artist
- Albums / All Albums of all artists / All Songs of one album
- Songs / All Songs off all artists
- Playlists / All Playlists / All Songs of one playlist

The "search list" is list #12, this list holds all songs

Additionally one could set up the library to include:

- Genre / All Genres / All Artist of one Genre / Albums … / Songs …..
- Year / All Year or periods (80s, 90s etc.) / All Artist from one year/period / Albums… / Songs…
- Mood / All Moods / All Songs from one mood …..

Media Library layout:

The library format is intended to have a very small memory footprint. It is not intended to be used as a
data base, it is read only. All structures defined here assume packed little-endian data.

The library consists of these sections:

1. Header struct head_str head
2. Files with num_files items struct files_str files[num_files]
3. Lists with num_list items struct list_str lists[num_lists]
4. List entries for all lists uint16_t list_entries[...]
5. File path information for all files uint8_t paths[total paths size]
6. String data for files, lists, paths uint8_t strings[total string size]
7. Private data – if present arbitrary structure and size

In order to keep the size of the library file small so that it can be held completely in RAM of the
players, the number of files and lists (not list entries) together is limited to 65536 (16 bit).

The maximum size of the library file is 1MB for Gmini220 and 2MB for Gmini120 products.

"Files" and "Lists" share the same numbering, "lists" are numbered from 0 to (num_list – 1) and "lists"
are numbered from num_list to (num_list + num_file – 1)

For the following structures these data types are used:

string_t:

uint32_t, byte offset into strings[]
path_t:

uint32_t, byte offset into paths[]
file_list_t:

uint16_t, number of file or list, used as index into lists or files array.

All sections must be aligned to the next 512 byte (Hard drive sector size) boundary.

All structures must be “packed”, 8bit and 16bit size values must be packed into 32bit words.

All data is stored in “little endian” mode

1. Header

 struct hdr_str {
 uint8_t magic[4]; = "JBML"
 uint32_t version; = 0x00000101
 uint32_t num_files;
 uint32_t num_lists;
 uint32_t offset_files;
 uint32_t offset_lists;
 uint32_t offset_list_entries;
 uint32_t offset_paths;
 uint32_t offset_strings;
 uint32_t offset_private_data;
 uint32_t search_list;
 uint8_t res[468];
 }

num_files, num_lists is the number of files and lists respectively. The sum of these two must be less
than 65536.

offset_files, and offset_lists is the offset in bytes from the start of the file to the respective structure
holding information about files and lists.

offset_list_entries is the offset in bytes from the start of the file to the variable length structure holding
the individual list entries.

offset_paths is the offset in bytes from the start of the file to the variable length structures which hold
the paths to the files.

offset_strings is the offset in bytes from the start of the file to the string pool, where all text strings
used in files, lists and paths stored.

offset_private_data is the offset in bytes from the start of the file to additional private data. The
contents of the data section are not specified and will not be used by Archos multimedia products.
Private data must be located at the end of the library file. If there is no private data present, the offset
should equal the file size and therefore point to the end of the file.

search_list gives the number of the list which will be used for searching through all content.

res fills the header structure to 512 bytes total length (for future expansion).

2. Files with num_file items

The file structure holds all information of one file in the media library and points to an actual file on the
hard drive:

 struct file_str {
 path_t path; pointer to the file path
 string_t name; file name on hard drive
 string_t artist; artist name (for music)
 string_t album; album name (for music)
 string_t title; song title (for music)
 uint8_t flags; flags to be used by Device, must be set to 0!
 uint8_t track; track # (on CD, record, for music)
 uint8_t type; file type
 uint8_t genre; file genre
 uint16_t year; file year
 uint16_t reserved; must be set to 0!
 }

If a file has no path (i.e. its in the root folder of the hard drive) the path value is "–1"
If a text string for artist, album or title is not set, the value of the pointer is "-1"

Flags are used by the Multimedia Device during operation and must be set to 0 when the library is
created.

The track # can be used to sort the songs in a list not only alphabetically but also according to the
actual track sequence on the CD. The track # is limited to a maximum 255!

Currently these values for type are defined:

0 MP3 file ".mp3"
1 MP2 file ".mp2"
2 WAV-PCM file ".wav"
3 WMA file “.wma”

As the actual filename extensions are not stored in the library it is imperative that each media file has
the correct type set in order to be able to find it on the hard drive.

genre specifies the music genre according to the extended Winamp genre list as specified in
appendix A.

year gives the recording/creation year.

Reserved is reserved for future use and should be set to 0!

3. Lists with num_list items

 struct list_str {
 uint8_t type; list type
 uint24_t offset; pointer to list entries
 uint16_t length; number of list entries
 file_list_t parent: pointer to parent list
 string_t name; name of list
 }

Currently these values for type are defined:

0 LIST_ROOT (root list is always first list in library)
1 LIST_ARTIST
2 LIST_ALBUM
3 LIST_SONG
4 LIST_M3U
5 LIST_GENRE
6 LIST_YEAR

The list type is used by the player SW GUI to show different "icons" for different types of lists

If the list is the "search list" as indicated in the file header and the list is "hidden" (not accessible from
list structure) then the root list should be given as parent.

4. List entries for all lists

As the number of files and lists is limited to 16bit, the actual list entries are just an array of unit16_t.
The offset pointer of struct list_str gives the position of the first list entry in this array.

List entries are either references to further lists or media files. In case of lists, the list entries give the
number of the list (num_list to (num_list + num_file – 1)), in case of files, the list entries give the
index number (0 to (num_list – 1)) of the files defined in struct files_str files[].

5. File path information for all files

In order to minimize the library size, all paths that give the actual location of files on the hard drive
are stored in a special way. The path names are split into the individual folder names and these are
stored in the string pool together with all other text strings. This way a lot of text strings can be "re-
used" for multiple paths.

 struct path_str {
 uint_32t length; length of the path (number of subfolders)
 string_t folder[]; pointers to names of subfolders
 }

Example:

/Music/Beatles/BestOf/Help.mp3

length = 3
folder[0] = pointer to string "Music"
folder[1] = pointer to string "Beatles"
folder[2] = pointer to string "BestOf"

6. String data for files, lists, paths

All text strings used in the library are stored as zero-terminated UTF8 strings. Strings are stored
consecutively and are referenced by an offset from the start of the string data. All strings should be
unique in order to minimize the library file size.

7. Private data

Private data if present consists of one or more data “chunks”. Each chunk is identified by a chunk
header which holds a “magic” identifier and the offset_next pointer which holds the offset of the next
chunk from the start of the library file. If there is no next chunk offset_next should equal the file size
and therefore point to the end of the file.

 struct chunk_hdr_str {
 uint8_t magic[4]; = "CHNK"
 uint32_t offset_next;
 uint8_t data[length_of_chunk];
 }

8. Filename

The library file must have the file name “lib.jbm” and it must be placed in the root directory of the
player in order to be accessed.

Appendix A: Extended Winamp Genre List

 0: Blues
 1: Classic Rock
 2: Country
 3: Dance
 4: Disco
 5: Funk
 6: Grunge
 7: Hip-Hop
 8: Jazz
 9: Metal
 10: New Age
 11: Oldies
 12: Other
 13: Pop
 14: R&B
 15: Rap
 16: Reggae
 17: Rock
 18: Techno
 19: Industrial
 20: Alternative
 21: Ska
 22: Death Metal
 23: Pranks
 24: Soundtrack
 25: Euro-Techno
 26: Ambient
 27: Trip-Hop
 28: Vocal
 29: Jazz+Funk
 30: Fusion
 31: Trance
 32: Classical
 33: Instrumental
 34: Acid
 35: House
 36: Game
 37: Sound Clip
 38: Gospel
 39: Noise
 40: Alternative Rock
 41: Bass
 42: Soul
 43: Punk
 44: Space
 45: Meditative
 46: Instrumental Pop
 47: Instrumental Rock
 48: Ethnic
 49: Gothic

 50: Darkwave
 51: Techno-Industrial
 52: Electronic
 53: Pop-Folk
 54: Eurodance
 55: Dream
 56: Southern Rock
 57: Comedy
 58: Cult
 59: Gangsta
 60: Top 40
 61: Christian Rap
 62: Pop/Funk
 63: Jungle
 64: Native American
 65: Cabaret
 66: New Wave
 67: Psychadelic
 68: Rave
 69: Showtunes
 70: Trailer
 71: Lo-Fi
 72: Tribal
 73: Acid Punk
 74: Acid Jazz
 75: Polka
 76: Retro
 77: Musical
 78: Rock & Roll
 79: Hard Rock
 80: Folk
 81: Folk-Rock
 82: National Folk
 83: Swing
 84: Fast Fusion
 85: Bebob
 86: Latin
 87: Revival
 88: Celtic
 89: Bluegrass
 90: Avantgarde
 91: Gothic Rock
 92: Progressive Rock
 93: Psychedelic Rock
 94: Symphonic Rock
 95: Slow Rock
 96: Big Band
 97: Chorus
 98: Easy Listening
 99: Acoustic

100: Humour
101: Speech
102: Chanson
103: Opera
104: Chamber Music
105: Sonata
106: Symphony
107: Booty Bass
108: Primus
109: Porn Groove
110: Satire
111: Slow Jam
112: Club
113: Tango
114: Samba
115: Folklore
116: Ballad
117: Power Ballad
118: Rhythmic Soul
119: Freestyle
120: Duet
121: Punk Rock
122: Drum Solo
123: Acapella
124: Euro-House
125: Dance Hall
126: Goa
127: Drum & Bass
128: Club-House
129: Hardcore
130: Terror
131: Indie
132: BritPop
133: Negerpunk
134: Polsk Punk
135: Beat
136: Christian Gangsta Rap
137: Heavy Metal
138: Black Metal
139: Crossover
140: Contemporary Christian
141: Christian Rock
142: Merengue
143: Salsa
144: Trash Metal
145: Anime
146: Jpop
147: Synthpop

Appendix B: libdump.c source code

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

struct hdr_str {
 char magic[4];
 unsigned int version;
 unsigned int num_files;
 unsigned int num_lists;
 unsigned int offset_files;
 unsigned int offset_list;
 unsigned int offset_list_entries;
 unsigned int offset_paths;
 unsigned int offset_strings;
 unsigned int offset_private_data;
 unsigned int search_list;
 char reserved[468];
};

struct file_str {
 int path;
 int name;
 int artist;
 int album;
 int title;
 unsigned int flags :8;
 unsigned int track :8;
 unsigned int type :8;
 unsigned int genre :8;
 unsigned int year :16;
 unsigned int reserved :16;
};

struct list_str {
 unsigned int type: 8;
 unsigned int offset: 24;
 unsigned int length: 16;
 unsigned int parent: 16;
 unsigned int name;
};

#define MAX_DEPTH 10
struct lib_path_str {
 int length;
 int path[MAX_DEPTH];
};

// buffer to store the list data
#define LIB_BUF_MAX 1024*1024
unsigned char lib_buf[LIB_BUF_MAX];

struct file_str *files;
int file_num = 0;

struct list_str *lists;
int list_num = 0;

unsigned short int *list_buffer;
char *strings;

char *paths;

int search_list;

static void utf8_to_latin1(unsigned char* src, char *dst)
{
 int utf8;

 while (*src != '\0') {
 if (*src < 0x80) {
 // normal ASCII, just copy char
 *dst++ = *src++;
 } else {
 // utf-8 char
 if ((*src >= 0xC0) && (*(src+1) >= 0x80)) {
 // we have a 2-byte UTF-8 char
 utf8 = ((*src & 0x1F) << 6) + (*(src+1) & 0x3F);
 if (utf8 < 0x100) {
 // latin1
 *dst++ = utf8;
 }
 // advance
 src += 2;
 } else {
 // ignore all other
 src++;
 }
 }
 }
 *dst = '\0';
}

static char *get_string(int p)
{
 static char lib_string[256];
 utf8_to_latin1((unsigned char*) (strings + p), lib_string);
 return lib_string;
}

static struct lib_path_str *get_path(int p)
{
 return (struct lib_path_str *) (paths + p);
}

static char *path_to_string(char *path, struct file_str *f)
{
 int i;
 char *p = path;

 strcpy(p, "");
 if (f->path == -1) {
 } else {
 for (i = 0; i < get_path(f->path)->length; i++) {
 strcat(p, "/");
 strcat(p, get_string(get_path(f->path)->path[i]));
 }
 }
 strcat(p, "/");
 strcat(p, get_string(f->name));

 return p;
}

static struct list_str *LIB_GetList(int list)
{
 return lists + (list - file_num);
}

static struct file_str *LIB_GetFile(int file)
{
 return files + file;
}

static int LIB_GetListItem(struct list_str *list, int pos)
{
 return list_buffer[list->offset + pos];
}

static int LIB_FirstList(void)
{
 return file_num;
}

static int LIB_IsList(int list)
{
 if (list >= file_num)
 return 1;
 else
 return 0;
}

static char list_type[6][10] = {
 "Root",
 "Artist",
 "Album",
 "Title",
 "Playlist",
 "Genre",
};

static void lib_dump_files(void)
{
 int i;
 char path[256] = "";

 printf("\nLibrary Files:\n\n");
 for (i = 0; i < file_num; i++) {
 printf("#%d", i);
 (void) path_to_string(path, &files[i]);
 printf("\tPath: %s\n", path);
 printf("\tFilename %s\n", get_string(files[i].name));
 if (files[i].artist != -1)
 printf("\tArtist: %s\n", get_string(files[i].artist));
 if (files[i].album != -1)
 printf("\tAlbum: %s\n", get_string(files[i].album));
 if (files[i].title != -1)
 printf("\tTitle: %s\n", get_string(files[i].title));
 if (files[i].track != 0)
 printf("\tTrack: #%d\n", files[i].track);

 printf("\tYear: %d\n", files[i].year);
 printf("\tGenre: #%d\n", files[i].genre);
 printf("\tType: %d\n", files[i].type);
 printf("\tFlags: %d\n", files[i].flags);

 printf("\n");
 }
}

static void tab(int len)
{
 int i;
 for(i = 0; i < len; i++)
 printf(" ");
}

static void lib_dump_list(int list, int level);

static void lib_dump_list(int list, int level)
{
 struct list_str *l;
 int i;
 int item;

 l = LIB_GetList(list);

 tab(level);
 printf("LIST %s TYPE %s", get_string(l->name), list_type[l->type]);
 if (list == search_list)
 printf(" = SEARCH_LIST");
 printf("\n");

 for (i = 0; i < l->length; i++) {
 item = LIB_GetListItem(l, i);

 if (LIB_IsList(item)) {
 lib_dump_list(item, level + 1);
 } else {
 tab(level + 1);

 printf("FILE ");
 if (LIB_GetFile(item)->title != -1)
 printf("#%02d Title: %s \n", LIB_GetFile(item)->track, get_string(
LIB_GetFile(item)->title));
 else
 printf("#%02d Name: %s \n", LIB_GetFile(item)->track, get_string(
LIB_GetFile(item)->name));
 }
 }
}

static void lib_dump_lists(void)
{
 printf("\nLibrary Lists:\n\n");
 lib_dump_list(LIB_FirstList(), 0);
}

static void lib_load(char* name)
{
 FILE *lib;
 int size;

 struct hdr_str *head;

 printf("\nLoading Library:\n\n");
 lib = fopen(name, "r");
 if(!lib) {

 printf("file not found\n");
 exit(1);
 }
 size = fread(lib_buf, 1, LIB_BUF_MAX, lib);
 fclose(lib);
 printf("library file size %d \n", size);

 printf("\nLibrary Header:\n\n");
 head = (struct hdr_str *) lib_buf;
 printf("magic %c%c%c%c \n", head->magic[0], head->magic[1], head->magic[2], head-
>magic[3]);
 printf("version %08X \n", head->version);

 printf("files %d\n", head->num_files);
 printf("lists %d\n", head->num_lists);
 printf("ofs_files %d\n", head->offset_files);
 printf("ofs_lists %d\n", head->offset_list);
 printf("ofs_lists_entries %d\n", head->offset_list_entries);
 printf("ofs_paths %d\n", head->offset_paths);
 printf("ofs_string %d\n", head->offset_strings);
 printf("ofs_private_data %d\n", head->offset_private_data);

 // get number of files and lists
 file_num = head->num_files;
 list_num = head->num_lists;

 // setup all pointers
 files = (struct file_str*) (lib_buf + head->offset_files);
 lists = (struct list_str*) (lib_buf + head->offset_list);
 list_buffer = (unsigned short int*) (lib_buf + head->offset_list_entries);
 paths = (char*) (lib_buf + head->offset_paths);
 strings = (char*) (lib_buf + head->offset_strings);

 search_list = head->search_list;
 printf("search list %d\n", search_list);
}

int main(int argc, char *argv[])
{
 if (argc != 2) {
 printf("Usage: libdump filename\n\n");
 exit(1);
 }

 lib_load(argv[1]);
 lib_dump_files();
 lib_dump_lists();
}

	List 13: Playlists
	List: 14: Favorites
	WMA file “.wma”

