Important Notice
The pages on this site contain documentation for very old MS-DOS software,
purely for historical purposes.
If you're looking for up-to-date documentation, particularly for programming,
you should not rely on the information found here, as it will be woefully
out of date.
Deriving Trigonometric Functions
◄Summary► ◄Example► ◄Contents► ◄Index► ◄Back►
──────────────────────────────────────────────────────────────────────────────
Deriving Trigonometric Functions
■ From the built-in Visual Basic functions COS, EXP, LOG, SIN, SGN, SQR, and
TAN, you can derive the other transcendental functions.
See: ◄COS Function► ◄EXP Function► ◄LOG Function► ◄SIN Function►
◄SGN Function► ◄SQR Function► ◄TAN Function►
■ The trigonometric and mathematical functions not intrinsic to Visual Basic
can be calculated as shown below, where X is an angle measured in radians
and Y is a unitless number:
Function Basic Equivalent
═══════════════════════ ════════════════════════════════════════════════
Secant SEC(X) = 1/COS(X)
Cosecant CSC(X) = 1/SIN(X)
Cotangent COT(X) = 1/TAN(X)
Hyperbolic Sine SINH(Y) = (EXP(Y) - EXP(-Y))/2
Hyperbolic Cosine COSH(Y) = (EXP(Y) + EXP(-Y))/2
Hyperbolic Tangent TANH(Y) = (EXP(Y) - EXP(-Y))/(EXP(Y) + EXP(-Y))
Hyperbolic Secant SECH(Y) = 2/(EXP(Y) + EXP(-Y))
Hyperbolic Cosecant CSCH(Y) = 2/(EXP(Y) - EXP(-Y))
Hyperbolic Cotangent COTH(Y) = EXP(-Y)/(EXP(Y) - EXP(-Y)) * 2 + 1
Inverse Sine ARCSIN(Y) = ATN(Y/SQR(1-Y*Y))
Inverse Cosine ARCCOS(Y) = -ATN(Y/SQR(1-Y*Y)) + pi/2
Inverse Secant ARCSEC(Y) = ATN(Y/SQR(1-Y*Y)) + (SGN(Y)-1) * pi/2
Inverse Cosecant ARCCSC(Y) = ATN(1/SQR(1-Y*Y)) + (SGN(Y)-1) * pi/2
Inverse Cotangent ARCCOT(Y) = -ATN(Y) + pi/2
Inverse Hyperbolic Sine ARCSINH(Y) = LOG(Y + SQR(Y*Y+1))
Inverse Hyperbolic Cos ARCCOSH(Y) = LOG(Y + SQR(Y*Y-1))
Inverse Hyperbolic Tan ARCCTANH(Y) = LOG((1 + Y)/(1 - Y)) / 2
Inverse Hyperbolic CSC ARCCSCH(Y) = LOG((SGN(Y)*SQR(Y*Y+1)+1)/Y)
Inverse Hyperbolic Sec ARCSECH(Y) = LOG((SQR(1-Y*Y)+1) / Y)
Inverse Hyperbolic Cot ARCCOTH(Y) = LOG((Y+1)/(Y-1)) / 2
■ Pi has the following approximate value:
pi = 3.14159265359 or pi = 4.0 * ATN(1.0)
■ To convert values from degrees to radians, multiply the angle (in
degrees) by pi/180 (or .0174532925199433), where pi = 3.141593.
■ To convert radian values to degrees, multiply radians by 180/pi (or
57.2957795130824), where pi = 3.141593.